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Phase-Transferred Diffusion Model

Supplementary Material

6. Preliminary background

6.1. Diffusion model background

Since the advent of Denoising Diffusion Probabilistic
Model (DDPM), diffusion model has soon dominated re-
search field of generative Al due to its advantages in train-
ing stability and sampling diversity as compared with GAN.
Grounded in the theory of stochastic differential equa-
tions, diffusion model learns to iteratively denoise a noise-
corrupted input signal (e.g., an image or a video clip), ul-
timately generating clean data that follow the underlying
target distribution. Diffusion model is conceptually com-
posed of a forward diffusion process and a reverse denois-
ing process. The forward diffusion process gradually adds
noise to the data over a series of steps, transforming the
data into a random Gaussian distribution, while the reverse
denoising process learns to reverse the forward process by
iteratively removing noise from the data, starting from pure
noise and gradually reconstructing the original data. The
model is trained to predict the noise added at each step of
the forward process. By learning to denoise, the model can
generate new data samples by starting from random noise
and applying the reverse process.

Given the original data distribution ¢(z), the forward
diffusion process applies a T-step Markov chain to gradu-
ally add noise to the original data x( according to the condi-
tional distribution q(x¢|x¢—1), which is defined as follows:

Q(It|$t—1) = N(l’t; \/@It—l, (1 - Oét)I)7 (15)

where o follows a predefined schedule, oy € (0,1), oy >
ay¢+1. Using the notation &y = szl «;, we can derive the
marginal distribution ¢(x|xo) that can be used to directly
obtain x; from x in a single step for arbitrary time step t:

q(z¢|zo) = N (245 VAo, (1 — ay)I), (16)

where /ar =~ 0. With the forward diffusion process,
the source data x is transformed into z7 that follows an
isotropic Gaussian distribution.

The reverse denoising process learns to conversely con-
vert a Gaussian noise zp to the manifold of the original
data distribution ¢(xg) by gradually estimating and sam-
pling from the posterior distribution p(z;—1|z:). Since
the posterior distribution p(x;—1|z:) is mathematically in-
tractable, we can derive the conditional posterior distribu-
tion p(x;—1|xs, o) with the Bayes formula and some alge-
braic manipulation:

plxi1|ze, w0) = N(zi_1; fie (e, 20), B ),  (17)
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where 8; = 1 — «;. However, the conditional posterior
distribution p(x;_1|x¢, o) cannot be directly used for sam-
pling since x is unavailable at inference time (z is the tar-
get of the sampling process). Thus, DDPM tries to estimate
the unknown z given the x; at each time step. Considering
the reparameterization form of Eq. 16:

= Vauro + V1 — ey, (20)

in which €; denotes the randomly sampled Gaussian noise
that maps =y to x; in a single step according to Eq. 16.
Given Eq. 20, we can represent xg using x; and €;:

(.’Et — 1-— C_ktﬁt). (21)
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However, the Gaussian noise ¢; sampled in the forward dif-
fusion process is also unknown for the reverse denoising
process where only z, is available. Consequently, DDPM
builds a noise estimation network ¢y that predicts the sam-
pled Gaussian noise €¢; in Eq. 21 with x; and time step ¢
as input, which is realized by training €y with the following
noise regression loss:

L= |ler — eg(ae, )2, (22)

where ¢ ~ Uniform({1,...,T}), e, ~ N(0,7), x; is com-
puted via Eq. 20. After model training, yg(z;), the estima-
tion of xg given x;, can be obtained simply by replacing ¢;
in Eq. 21 with the predicted noise €g(x¢,t):

y@(«Tt) = \/%

Replacing the unknown x( in Eq. 17 with its predicted
estimation yp(x;) given by Eq. 23, we can sample ;1
based on z; from the approximate posterior distribution
N (zi—1; e (e, yo(2)), Bt L), and thus sample the ultimate
xo step by step from the initial Gaussian noise zr.

(xt —V 1-— dteg(xt,t)). (23)

6.2. Conditional diffusion model

Taking the image generation task as an example, conditional
diffusion model tackles conditional image synthesis by in-
troducing additional condition ¢ to the model to guide im-
age generation (denoising) process. In this paradigm, the



condition signal c together with x, and time step ¢ are taken
as input to the noise estimation network €y, such that €y is
trained to conditionally predict the added Gaussian noise
in the forward diffusion process, as supervised by the ran-
domly sampled ¢; in Eq. 20. The training loss given by Eq.
22 is correspondingly updated as:

L= ||€t - 69($t7t>c)”2> (24)

where ¢ ~ Uniform({1,...,7}), ¢ ~ N(0,Z), z; is com-
puted via Eq. 20. After model training, the reverse sam-
pling process is applied to generate new images from ran-
dom Gaussian noise 7, based on the step-by-step denois-
ing according to the conditional posterior distribution given
by Eq. 17, in which the unknown z is approximated by the
linear combination of z; and the conditional noise estima-
tion, i.e., the yg(z;) (the approximate xo estimated by x;)
in Eq. 23 is updated as:

1
yg(It,C) = \/a

6.3. Denoising diffusion implicit model

(¢ — V1 — qyeq(ay,t,c)). (25)

Denoising diffusion implicit model (DDIM) is a variant of
diffusion model that builds on the framework of DDPM but
enables much more efficient sampling while maintaining
high-quality generation results. DDIM can generate sam-
ples in significantly fewer steps compared with DDPM by
modeling the reverse denoising process as a non-Markovian
process and skipping the intermediate denoising steps.

DDIM is totally the same as DDPM in model training
and only differs with DDPM in model inference, namely
that DDIM can directly inherit the pre-trained DDPM
model. To compute z;_; from z; in the reverse denoising
(sampling) process, DDIM features a two-step deterministic
denoising. In the first step, DDIM estimates an approximate
xo based on x; using Eq. 23. In the second step, DDIM
computes x;_1 from the approximate x( using the forward
diffusion in the form of Eq. 20:

T =/ ou_1ye(xe) +

where yg(x;) is given by Eq. 23. Considering that the ¢;_;
in the above equation is the sampled Gaussian noise in the
forward diffusion process, which is unknown in the reverse
denoising process, we can replace €;_1 with eg(x;—1,t—1),
the approximate €;_; estimated by the network ey. There-
fore, the Eq. 26 can be updated as:

Ti—1 = Vou_1ye(ze) +

However, the €p(x;_1,¢ — 1) in the above equation is also
unavailable since x;_; is unknown (we only know x; and
want to compute z;_1). Thus, we can further approximate

1—a1621,  (26)

1= ar_1eg(wir,t —1). (27)

€g(xi—1,t — 1) with €g(x, t) and arrive to the final DDIM
sampling equation:

Tio1 = VJu_1ye(xe) +

Eq. 28 shows that the reverse sampling process of DDIM is
totally deterministic, namely, each starting Gaussian noise
7 yields a unique sampling result xg.

Note that the above derived two-step sampling process of
xy — xo — x¢—1 also applies for xy — x¢9 — x41. That
is, a clean image x( can be deterministically inverted into a
Gaussian noise through the following inversion process:

Ti41 = \/dt+1y9(l‘t) + \/ 1-— @t+1€9(l't,t). (29)

The DDIM inversion given by Eq. 29 has wide applications
in image editing and style transfer. For conditional image
generation of DDIM, the yy () and €g(z¢, t) in Eq. 28 and
Eq. 29 are updated to yg(x¢, ¢) and €g (x4, t, ¢) respectively.

6.4. Latent diffusion model

1-— O_[t_leg(l’t,t). (28)

Latent diffusion model (LDM) compresses images from
high-dimensional pixel space into low-dimensional fea-
ture space via pre-trained autoencoder, and builds diffusion
model based on the latent feature space, such that computa-
tional overhead for both training and inference can be dra-
matically lowered. The training of LDM is similar to Eq.
24 except that we use notation z to denote latent features:

L = |le; —ep(2t,t,¢)|l2s (30)
where ¢, ~ N(0,Z), 2z = /azzo + V1 — Q€t, 20 =

E(xo), E is the pre-trained image encoder. The reverse
denoising process from zr ~ N(0,Z) to z is the same
as xp ~ N(0,7) to =y in DDPM. After reverse denoising
process, the denoised clean features 2 is decoded by the
pre-trained decoder D to yield the finally generated image
Zo, i.e., g = D(zp). In LDM framework, the condition ¢
could be the extracted image features that are concatenated
with z; as the input of ¢y for image-to-image translation ap-
plications, and also could be the encoded textual features
that are interacted with x; with cross-attention layers inside
€p for text-to-image synthesis task.

7. More qualitative results

Below we showcase more qualitative results of our PTD-
iffusion as a supplement to the main text. In Fig. 13 and
Fig. 14, we display more results of hidden content dis-
cernibility control realized by varying the async distance
parameter d. In Fig. 15 and Fig. 16, we display more
examples demonstrating the sampling diversity property of
our method, namely generating diversified illusion pictures
with fixed reference image and text prompt. Finally, we
present more optical illusion hidden pictures generated by
our method in Fig. 17 to Fig. 27.



Text prompt: “rock cave scenery, oil painting”
reference

Figure 13. More results of hidden content discernibility control realized by varying the async distance parameter d in our method.



Text prompt: “mountain cliff near the sea’’
reference

Figure 14. More results of hidden content discernibility control realized by varying the async distance parameter d in our method.



Text prompt: “mountain stream, oil painting”

reference

Figure 15. More examples of diversified sampling results of our method realized by varying the initial Gaussian noise Zr.



Text prompt: “mountain landscape, oil painting”

reference

Figure 16. More examples of diversified sampling results of our method realized by varying the initial Gaussian noise Zr.
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“farmhouse,  “mountain stream,  “forest path,
oil painting”  water color painting”  oil painting”

Fy
“mountain cliff,
“laboratory” bird view’

“mountain road, “city park,
painting”

Figure 17. More qualitative results of our method.
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Figure 18. More qualitative results of our method.
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“coastal scenery,
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painting” oil painting” bird view”
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“abandoned house,
painting”

“contryside,
painting’

Figure 19. More qualitative results of our method.
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“farmhouse, “restaurant, “factory,
oil painting”

)

painting’

“countryside, “mountain scenery,
painting”’ “stream, painting” painting”’

—

“town street, “castle,
painting’ painting”

Figure 20. More qualitative results of our method.
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“living room,  “mountain stream, “garden,
oil painting”  water color painting”  oil painting”
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“mountain road, “restaurant, “bedroom,

oil painting” oil painting” oil painting”

“balcony, “factory,
oil painting” painting”

Figure 21. More qualitative results of our method.



“mountain cliff,
bird view”

[

“supermarket,
oil painting”

p—l

“factory,
painting”

reference

“street view,

oil painting”

painting”

Figure 22. More qualitative results of our method.

“royal room,

“rock cave,
oil painting”
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“harbor,
painting”
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reference

“countryside view, “snow mountains, “royal room,
oil painting” oil painting” painting”

Pty

“seaside, “church, “ancient ruins
oil painting” oil painting” oil painting”

“country inn, “factory, “grocery ,
oil painting” oil painting” oil painting”

Figure 23. More qualitative results of our method.



“islands,
bird view”

“Faily pay,
oil painting”

“royal palace,
painting”

reference

“castle, “ancient building,
painting’ oil painting”

“military base, “park,
oil painting”

“house, “mountain road,
oil painting”

Figure 24. More qualitative results of our method.
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“canyon, “farmland, “desert,
painting’ painting’ oil painting”

“mountain stream,  “country inn, “music room,
painting” oil painting” painting”
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“pavilion,
oil painting”

“ancient ruins,
painting”

Figure 25. More qualitative results of our method.
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“island,
anime style”
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“royal room,
oil painting”

“warehouse,
oil painting”

Figure 26. More qualitative results of our method.



“coastal scenery,
reference oil painting”

“pond, “palace,
water color” painting”
F - E * >

“snow mountain,  “amusement park,
painting” oil painting”

Figure 27. More qualitative results of our method.
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